Lecture 02: Language Modeling

Instructor: Dr. Hossam Zawbaa

Image by kirkh.deviantart.com

How many words?

- I do mainly business data processing
 - Fragments
 - Filled pauses
- Are cat and cats the same word?
- Some terminology
 - Lemma: a set of lexical forms having the same stem, major part of speech, and rough word sense
 - Cat and cats = **same lemma**
 - Wordform: the full inflected surface form.
 - Cat and cats = different wordforms

Moving toward language Probability and part of speech tags

- What's the probability of a random word (from a random dictionary page) being a verb?
- How to compute each of these:

>All words = just count all the words in the dictionary

- ➤# of ways to get a verb: number of words which are verbs!
- ≻If a dictionary has 50,000 entries, and 10,000 are verbs

≻P(V) is 10000/50000 = 0.2

How many words?

- *Token* is an *individual occurrence* of a linguistic unit in speech or words in a text.
- *Type* is the number of **distinct** linguistic unit in speech or words in a text.
- Thus, the sentence "a good food is a food that you like" contains **nine** tokens, but only **seven** types, as "a" and "food" are repeated.
- Switchboard-1 Telephone Speech Corpus (SWBD):
 - ~20,000 wordform types,
 - 2.4 million wordform tokens
- Brown et al (1992) large corpus
 - 293,181 wordform types
 - 583 million wordform tokens
- Let N = number of tokens, V = vocabulary = number of types
- General wisdom: V > O(sqrt(N))

Language Modeling

- We want to compute P(w1,w2,w3,w4,w5...wn), the probability of a sequence.
- Alternatively we want to compute P(w5|w1,w2,w3,w4): the probability of a word given some previous words.
- The model that computes P(W) or P(wn|w1,w2...wn-1) is called the **language model**.
- A better term for this would be "The Grammar".
- But "Language model" or LM is standard.

Computing P(W)

- How to compute this joint probability:
 - P("the","other","day","I","was","walking","along","and","saw","a","lizard")
- Note: let's rely on the Chain Rule of Probability

The Chain Rule of Probability

• Recall the definition of conditional probabilities

$$P(A \mid B) = \frac{P(A^{\wedge}B)}{P(B)}$$

• Rewriting:

$$P(A^{\wedge}B) = P(A \mid B)P(B)$$

• More generally

P(A,B,C,D) = P(A) P(B|A) P(C|A,B) P(D|A,B,C)

• In general

 $P(x_1, x_2, x_3, ..., x_n) = P(x_1) P(x_2 | x_1) P(x_3 | x_1, x_2) ... P(x_n | x_1 ..., x_{n-1})$

The Chain Rule Applied to joint probability of words in sentence

$$P(w_1^n) = P(w_1)P(w_2|w_1)P(w_3|w_1^2)\dots P(w_n|w_1^{n-1})$$

=
$$\prod_{k=1}^n P(w_k|w_1^{k-1})$$

P("the big red dog was") = P(the) * P(big|the) * P(red|the big) * P(dog|the big red) * P(was|the big red dog)

Unfortunately

- There are a lot of possible sentences
- We'll never be able to get enough data to compute the statistics for those long prefixes: P(lizard|the,other,day,I,was,walking,along,and,saw,a)

Markov Assumption

- Make the simplifying assumption
 - P(lizard|the,other,day,I,was,walking,along,and,saw,a) = P(lizard|a)
- Or maybe
 - P(lizard|the,other,day,I,was,walking,along,and,saw,a) = P(lizard|saw,a)

An example

- <s>I am Sam </s>
- <s> Sam I am </s>
- <s>I do not like green eggs and ham </s>

$$P(I | ~~) = \frac{2}{3} = .66 \qquad P(Sam | ~~) = \frac{1}{3} = .33 \qquad P(am | I) = \frac{2}{3} = .33~~~~$$
$$P(| Sam) = \frac{1}{2} = 0.5 \qquad P(~~| Sam) = \frac{1}{2} = 0.5 \qquad P(Sam | am) = \frac{1}{2} = .5~~$$
$$P(do | I) = \frac{1}{3} = .33$$

Maximum Likelihood Estimates

- The maximum likelihood estimate of some parameter of a model M from a training set T
 - Is the estimate
 - that maximizes the likelihood of the training set T given the model M
- Suppose the word Chinese occurs 400 times in a corpus of a million words (Brown corpus)
- What is the probability that a random word from some other text will be "Chinese"
- MLE estimate is 400/100000 = .004
 - This may be a bad estimate for some other corpus
- But it is the **estimate** that makes it **most likely** that "Chinese" will occur 400 times in a million word corpus.

More examples: Berkeley Restaurant Project sentences

- mid priced thai food is what i'm looking for
- can you give me a listing of the kinds of food that are available
- i'm looking for a good place to eat breakfast
- when is caffe venezia open during the day

Raw bigram counts

• Out of 9222 sentences

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

Raw bigram probabilities

• Normalize by unigrams:

i	want	to	eat	chinese	food	lunch	spend
2533	927	2417	746	158	1093	341	278

• Result:

	i	want	to	eat	chinese	food	lunch	spend
i	0.002	0.33	0	0.0036	0	0	0	0.00079
want	0.0022	0	0.66	0.0011	0.0065	0.0065	0.0054	0.0011
to	0.00083	0	0.0017	0.28	0.00083	0	0.0025	0.087
eat	0	0	0.0027	0	0.021	0.0027	0.056	0
chinese	0.0063	0	0	0	0	0.52	0.0063	0
food	0.014	0	0.014	0	0.00092	0.0037	0	0
lunch	0.0059	0	0	0	0	0.0029	0	0
spend	0.0036	0	0.0036	0	0	0	0	0

Bigram estimates of sentence probabilities

• P(<s> I want english food </s>) =

p(i|<s>) x p(want|I) x p(english|want) x p(food|english) x
p(</s>|food)

= 0.24 x 0.33 x 0.0011 x 0.5 x 0.68

= 0.000031

What kinds of knowledge?

- P(english|want) = 0.0011
- P(chinese | want) = 0.0065
- P(to|want) = 0.66
- P(eat | to) = 0.28
- P(food | to) = 0
- P(want | spend) = 0
- P (i | <s>) = 0.25

The Shannon Visualization Method

- Generate random sentences
- Choose a random bigram <s>, w according to its probability
- Now choose a random bigram (w, x) according to its probability
- And so on until we choose </s>
- Then string the words together

```
    <s> I
        I want
            want to
            to eat
            eat
```

Chinese food

eat Chinese

food </s>

Unigram	 To him swallowed confess hear both. Which. Of save on trail for are ay device and rote life have Every enter now severally so, let Hill he late speaks; or! a more to leg less first you enter Are where execut and sighs have rise excellency took of Sleep knave we. near; vile like
Bigram	 What means, sir. I confess she? then all sorts, he is trim, captain. Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live king. Follow. What we, hath got so she that I rest and sent to scold and nature bankrupt, nor the first gentleman? Enter Menenius, if it so many good direction found'st thou art a strong upon command of fear not a liberal largess given away, Falstaff! Exeunt
Trigram	 Sweet prince, Falstaff shall die. Harry of Monmouth's grave. This shall forbid it should be branded, if renown made it empty. Indeed the duke; and had a very good friend. Fly, and will rid me these news of price. Therefore the sadness of parting, as they say, 'tis done.
Quadrigram	 King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A great banquet serv'd in; Will you not tell me who I am? It cannot be but so. Indeed the short and the long. Marry, 'tis a noble Lepidus.

Shakespeare as corpus

- N=884,647 tokens, V=29,066
- Shakespeare produced 300,000 bigram types out of V²= 844 million possible bigrams: so, 99.96% of the possible bigrams were never seen (have zero entries in the table)
- Quadrigrams worse: What's coming out looks like Shakespeare because it *is* Shakespeare